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Abstract. We study spectral transformations in the theory of orthogonal polynomials which are
similar to Darboux transformations for the Schrödinger equation. Linear transformations of the
Stieltjes function with coefficients that are rational in the argument are constructed as iterations
of the Christoffel and Geronimus transformations. We describe a characteristic property of semi-
classical orthogonal polynomials (SCOP) on the uniform and the exponential lattice; namely,
that all these polynomials can be obtained through simple quasi-periodic andq-periodic (self-
similar) closures of the chain of linear spectral transformations. In the self-similar setting, a
characterization of the Laguerre–Hahn polynomials on linear andq-linear lattices is obtained
by considering rational transformations of the Stieltjes function generated by transitions to the
associated polynomials.

1. Introduction

Suppose we have an eigenvalue problem for a linear differential, difference, or differential–
difference operatorL, Lψ = λψ . Let us take an operatorD of similar nature and demand
the existence of an intertwining relationDL = L̃D, where L̃ has the same form asL
with different coefficients in front of the differential or difference operators. The formal
solutions of the eigenvalue problem̃Lψ̃ = λψ̃ are of course given bỹψ = Dψ , but the
existence of boundary conditions and of the zero modes ofD makes it non-trivial to find
the full spectrum ofL̃ from the known properties ofL. We call the transformation ofψ
into ψ̃ spectral if the spectral characteristics of̃L can be found exactly from those ofL.
This definition does not provide a fully determined class of spectral transformations but we
shall use in this paper a set of simple transformations which is rich enough to cover special
classes of orthogonal polynomials.

The best known example of such a transformation is given by the Darboux
transformation, which has found wide applications in quantum mechanics and in the theory
of nonlinear integrable systems, see for example [16, 22]. Under certain restrictions it allows
one to intertwine two Schrödinger operators whose spectra differ from each other by at most
one discrete point. The discrete Darboux transformation (DDT) allows one to make similar
spectral changes for the discrete Schrödinger equation or three-term recurrence relation for
orthogonal polynomials

Anψn+1+ Bnψn + Cnψn−1 = 3ψn (1.1)
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whereAn, Bn, Cn are some real coefficients,ψn is an unknown discrete wavefunction and
3 is a spectral parameter. The discrete indexn can vary either from−∞ to∞ (unrestricted
problem), from 0 to∞ (restricted problem), or even take complex values. There are also
special classes of finite-dimensional problems, when 06 n 6 N .

Using the freedom associated with the normalization ofψn in equation (1.1), eitherAn
or Cn can be set equal to 1. We chooseAn = 1 and rewrite (1.1) in the form

Lψ ≡ ψn+1+ bnψn + unψn−1 = λψn. (1.2)

Various aspects of the DDT for (1.2) were discussed in [10, 16, 23] and other works (for a
list of relevant references in the orthogonal polynomials literature, see [3, 6, 14, 26]). The
explicit form of the DDT used in this paper is

ψ̃n = Dψn ≡ ψn − φn

φn−1
ψn−1 (1.3)

whereφn is a special solution of the discrete Schrödinger equation (1.2) for the special
valueλ = µ of the spectral parameter. Ifψn(λ) is a general solution of (1.2) theñψn(λ) is
the general solution (forλ 6= µ) of the equation

L̃ψ ≡ ψ̃n+1+ b̃nψ̃n + ũnψ̃n−1 = λψ̃n (1.4)

with the new recurrence coefficients

ũn = un−1
φnφn−2

φ2
n−1

b̃n = bn + φn+1

φn
− φn

φn−1
. (1.5)

Consider an infinite chain of successive DDTs with parametersµj and the corresponding
solutions of (1.2)φjn, j ∈ Z. DenoteAjn = φjn/φjn−1. Then, evidently, equations (1.5) can
be rewritten in the form

uj+1
n = ujn−1

A
j
n

A
j

n−1

bj+1
n = bjn + Ajn+1− Ajn. (1.6)

These are the (non-isospectral) discrete-time Toda chain equations [25], where the variable
j plays the role of the discrete evolution parameter (‘time’).

In [23] various similarity reductions of equations (1.6) have been considered. Let us
recap on the corresponding definitions. There are obvious symmetries mapping the space
of solutions of (1.6) onto itself—the shifts ofj and n by some integers, the shifts ofbjn
by a constant, and the appropriate uniform scalings ofu

j
n, b

j
n andAjn. One can consider

a subclass of solutions which is invariant under the general combination of these discrete
symmetry transformations with fixed parameters of shifts and scalings. Such solutions
are called self-similar [22, 23]. The key property of the resulting recurrence coefficients
(potentials) is that for them there exists a finite sequence of DDTs, the effect of which is
equivalent to a simple affine transformation of the initial potentials (see later).

The transformation (1.3) was used in [25] to explicitly construct particular reflectionless
potentials in the context of ‘discrete quantum mechanics’. These potentials turned out to
be closely connected to the special classes of the Askey–Wilson polynomials. In [26] it
was shown that recurrence coefficients of the Askey–Wilson polynomials provide a simple
solution of the discrete-time Toda chain equations (1.6).

We continue in this paper a systematic study of the DDT for orthogonal polynomials
(OP), thus pursuing the work undertaken in [23–26]. There are in general two different types
of DDT transforming OP into OP of the same degree; they bear the names of Christoffel
and Geronimus. An essential clue to the whole consideration is provided by the observation
that the class of semi-classical orthogonal polynomials (SCOP) and the Laguerre–Hahn
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polynomials [11, 13, 14] is invariant under DDT on the uniform (linear) and exponential
(q-linear) lattices. For the terminology of lattices in connection to OP, see [17]. This
allows for a new characterization of these polynomials as self-similar systems arising from
the generalq-periodic reductions of the DDT, which is the main result of the present paper.

2. Spectral transformations for orthogonal polynomials

In this section we describe two possible types of DDT for OP having the property that
the transformed polynomial has the same degree as the initial one. We also present a set
of explicit formulae describing the main features of the transformed OP for both types of
transformation.

In what follows we restrict ourselves to the case of monic OPPn(x) satisfying the
recurrence relation

Pn+1(x)+ unPn−1(x)+ bnPn(x) = xPn(x) n = 1, 2, . . . (2.1)

and the initial conditions

P0(x) = 1 P1(x) = x − b0. (2.2)

By the term ‘monic’ we mean that the leading term inPn(x) is xn. (This clearly follows
from (2.1) and (2.2).) Ifun > 0, n = 1, 2, . . . , and bn are real forn = 0, 1, . . . , the
polynomialsPn(x) are then orthogonal on the real axis with some positive definite measure
dσ(x) (Favard’s theorem [3])∫ a2

a1

Pn(x)Pm(x) dσ(x) = hnδnm (2.3)

whereh0 = 1, hn = u1u2 . . . un > 0, n > 0, are the normalization constants and where
the limits of integrations are nota priori restricted,−∞ 6 a1 < a2 6 ∞. In principle,
the measure may contain a singular continuous part bearing the Cantor set properties which
prevents definition of the weight functionw(x): dσ(x) = w(x) dx. For simplicity of
notation, we skip such situations but we allow for the measure to contain discrete jumps,
in which case the weight functionw(x) comprises a number of Dirac delta-functions.

The functions

Fn(x) =
∫ a2

a1

Pn(y)w(y) dy

x − y n = 0, 1, 2, . . . (2.4)

define the second linearly independent solution of the recurrence relation (2.1) with the
initial conditionF1(x) = (x − b0)F0(x)− 1. The Stieltjes function

F(x) ≡ F0(x) =
∫ a2

a1

w(y) dy

x − y (2.5)

plays a very important role in the theory of orthogonal polynomials [1, 3]. It represents the
generating function of momentsck:

F(x) =
∞∑
k=0

ck

xk+1
ck =

∫ a2

a1

ykw(y) dy.

Quite often in looking forw(x), it proves more convenient or easier to calculateF(x) and
to use subsequently the inverse Stieltjes transform to obtain the weight functionw(x) [1].
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One of the numerous important properties of the Stieltjes function is its representation in
the form of a continued fraction

F(x) = 1

x − b0− u1

x − b1− u2

x − b2− · · ·

. (2.6)

This formula allows one to recover the recurrence coefficientsun, bn if F(x) is given. Let
us remark that this approach was successfully applied to the characterization of general
solutions of discrete integrable systems [4, 18].

The first type of spectral transformations for orthogonal polynomials was proposed by
Christoffel in the last century. The corresponding transformed OP are known as kernel
polynomials [3]

P̃n(x) = Pn+1(x)− AnPn(x)
x − µ (2.7)

whereAn = Pn+1(µ)/Pn(µ) and µ is some parameter. The recurrence coefficients are
transformed into

ũn = unAn

An−1
b̃n = bn+1+ An+1− An (2.8)

and the weight and Stieltjes functions into

w̃(x) = (x − µ)w(x)
b0− µ (2.9)

F̃ (x) = (x − µ)F(x)− 1

b0− µ . (2.10)

It is easily seen that the conditioñw(x) > 0 leads to the restrictionµ 6 a1 or µ > a2, i.e.
the auxiliary spectral parameterµ should lie outside the spectral interval. From (2.8) one
finds the transformation laws for the normalization constants

h̃n = hnAn(µ− b0)
−1 n = 1, 2, . . . , h̃0 = h0 = 1. (2.11)

We shall refer to the transformation (2.7) as the Christoffel transform (CT). It is clear from
(2.11) that the CT preserves the normalization of the weight function.

Another (more general) type of spectral transformation for OP was considered in detail
by Geronimus in 1940 [7, 8] (it was later rediscovered many times in different contexts,
see e.g. [9, 14, 26] and references therein). The Geronimus transform (GT) is written in the
form

P̃0 = 1 P̃n(x) = Pn(x)− BnPn−1(x) n = 1, 2, . . . (2.12)

whereBn = φn/φn−1 and the functionφn is a solution of the recurrence relation (2.1) for
an auxiliary spectral parameterµ:

φn = Fn(µ)+ βPn(µ) n = 0, 1, . . . . (2.13)

In generalβ is arbitrary. However, if one wishes the new polynomialsP̃n(x) to possess a
positive weight function then there are some restrictions on the values ofβ while the values
of µ should be constrained as in the case of the CT.

The recurrence coefficients are transformed according to the formulae

ũ1 = φ1

φ2
0

ũn = un−1Bn

Bn−1
n = 2, 3, . . .

b̃0 = b0+ φ1

φ0
b̃n = bn + Bn+1− Bn n = 1, 2, . . . . (2.14)
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Note that the apparent mismatch in the expressions (2.14) ofũn, b̃n for n = 0, 1 and the
highern is due to the specific initial conditions (2.2) that determine OP solutions.

The transformation laws for the weight and Stieltjes functions have the form [7]

w̃(x) = βδ(x − µ)+ w(x)(µ− x)−1

β + F(µ) (2.15)

F̃ (x) = F(µ)+ β − F(x)
(x − µ)(β + F(µ)) . (2.16)

It is seen from (2.15) that as a result of the GT the weight function picks up an additional
discrete mass at the pointx = µ. This is equivalent to the addition of a pole in the Stieltjes
function as is seen from (2.16). The normalization constants are transformed as follows

h̃0 = 1 h̃n = hn−1φn

φ0φn−1
n = 1, 2, . . . . (2.17)

In contrast to the CT which involves only one parameterµ, the GT depends on
two parametersµ and β. Let us denote the Christoffel transformation byC(µ) and the
Geronimus transformation byG(µ, β) (i.e. the action of the operatorC(µ) on orthogonal
polynomialPn(x) gives P̃n(x) as in (2.7), etc). It is easily seen that for different values
of µ these transformations commute with one another:C(µ1)G(µ2, β) = G(µ2, β)C(µ1).
However, for the same parameterµ we have the following relations

C(µ)G(µ, β) = 1 G(µ, β)C(µ) = U(µ, β) (2.18)

whereU(µ, β) is the so-called Uvarov transformation [27] which has the effect of adding
a single mass to the weight function at the pointx = µ:

w̃(x) = w(x)+ β(µ− b0)δ(x − µ)
1+ β(µ− b0)

. (2.19)

The transformation law forF(x) is obvious from (2.19). Let us remark that transformation
formulae for the Stieltjes function are not sensitive to the presence of the singular continuous
part in the orthogonality measure.

Equations (2.18) follow easily from (2.9) and (2.15). The important relations described
above were written by Geronimus in a somewhat different (but equivalent) form in [8]. Note
that, in fact, the Uvarov transformation is contained in an implicit form in [8]. Combining
several transformationsC(µ) andG(µ, β) with different values of the parametersµ andβ,
we can construct spectral transformations for OP generated by linear difference operators
of arbitrary order. These transformations were described explicitly in [8] in a determinant
form. This form was also discovered later in many other papers. Below we shall refer
sometimes to CT and GT as DDT assuming that they perform a map of OP onto OP.

Consider spectral transformations composed fromK different CT with parametersµi ,
i = 1, 2, . . . , K and J different GT with parametersνi, βi , i = 1, 2, . . . , J . Assume
that µk 6= νi for all values of i, k. This condition guarantees commutativity of all
transformations. Hence we can first perform the CT and then the GT. LetF(x) be the
Stieltjes function for the initial OP. It can be shown by induction that the transformed
Stieltjes function is

FKJ (x) = σKJ (x − µ1)(x − µ2) . . . (x − µK)F(x)+ RKJ (x)
(x − ν1)(x − ν2) . . . (x − νJ ) (2.20)

whereσKJ is a constant, andRKJ (x) is some polynomial the degree of which is equal to
max(K − 1, J − 1). The corresponding monic orthogonal polynomialsP (KJ)n (x) can be
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explicitly presented in the form

(x − µ1)(x − µ2) . . . (x − µK)P (KJ)n (x)

= D−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

Pn−J (x) Pn−J+1(x) . . . Pn+K(x)
Pn−J (µ1) Pn−J+1(µ1) . . . Pn+K(µ1)

. . . . . . . . . . . .

Pn−J (µK) Pn−J+1(µK) . . . Pn+K(µK)
φn−J (ν1;β1) φn−J+1(ν1;β1) . . . φn+K(ν1;β1)

. . . . . . . . . . . .

φn−J (νJ ;βJ ) φn−J+1(νJ ;βJ ) . . . φn+K(νJ ;βJ )

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.21)

where

Dn =

∣∣∣∣∣∣∣∣∣∣∣

Pn−J (µ1) Pn−J+1(µ1) . . . Pn+K−1(µ1)

. . . . . . . . . . . .

Pn−J (µK) Pn−J+1(µK) . . . Pn+K−1(µK)

φn−J (ν1;β1) φn−J+1(ν1;β1) . . . φn+K−1(ν1;β1)

. . . . . . . . . . . .

φn−J (νJ ;βJ ) φn−J+1(νJ ;βJ ) . . . φn+K−1(νJ ;βJ )

∣∣∣∣∣∣∣∣∣∣∣
. (2.22)

Recall thatφn(z;β) = Fn(z) + βPn(z) is an arbitrary solution of the recurrence equation
φn+1+ bnφn + unφn−1 = zφn.

The case of coinciding parametersµj = µk or (and)νj = νk, βj = βk for somej, k
can be considered analogously and leads to the replacement of entries in the corresponding
strings in (2.21) by their derivatives. We do not analyse this (special) situation here. The
formula (2.21) was obtained by Uvarov [27] for the special caseβj = 0, j = 1, 2, . . . , J ,
when no additional discrete masses appear in the transformed measure.

It is seen from (2.20) that the Stieltjes functioñF(x) obtained fromF(x) through a
finite number of arbitrary CT and GT can be presented in the form

F̃ (x) = R1(x)F (x)+ R2(x) (2.23)

whereR1(x) andR2(x) are some rational functions in the argumentx. One can also prove
the converse statement (see, e.g., [29])

Proposition 1. If two Stieltjes functionsF̃ (x) and F(x) are related to each other by
the linear transformation (2.23) with rational coefficientsR1(x) and R2(x) then the
corresponding OP̃Pn(x) andPn(x) are obtained from each other through finite numbers of
CT and GT.

This proposition will be used in the next section to characterize semi-classical OP on uniform
and exponential lattices. Actually, Maroni proposed in [15] another equivalent form of the
OP transformation corresponding to the general linear transformation of the Stieltjes function

B(x)P (KJ)n (x) =
n+K∑
k=n−J

ξn,kPk(x) (2.24)

whereB(x) is a polynomial of theKth degree andξn,k are some numbers (not depending
on x). It is obvious that the determinant formula (2.22) can be rewritten in the form (2.24).
It was shown in [15] that, conversely, if there is a relation of the form (2.24) between two
OP (with some polynomialB(x) and some coefficientsξn,k) then the polynomialsP (KJ)n can
be obtained fromPn(x) by applyingK Christoffel andJ Geronimus transforms. (Strictly
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speaking, Maroni proved this statement in a slightly different but equivalent formulation,
without referring to the CT and GT.)

It is worth stressing that the CT and GT are the only first-order spectral transformations
that transform OP into OP. Here ‘first order’ means that the transformations involve only
two polynomialsPn+j (x) andPn+j−1(x), wherej is some integer. For the CT,j = 1 and
for the GT j = 0. There are no non-trivial maps of OP into OP for otherj . A more
essential remark is that the second-order DDTs that map OP into OP with positive measures
are richer than the first-order ones. Indeed, the choicea1 < µ < a2 spoils the positivity of
the weight functions for both CT and GT, but the second-order DDT may cure this problem
in such a way that the measure will be positive while a mass point is inserted into the
continuous spectrum [26]. We shall not consider these more complicated situations here.

3. Quasi-periodic reductions of spectral transformations and semi-classical
orthogonal polynomials

Obviously the iterations of CT and GT can be put into the chain form (1.6). However,
this would create a mismatch in notation in the context of OP and remove distinguishing
properties of the taken spectral transformations. Therefore in the discussion of self-similar
solutions of (1.6) given below, we use notation different from [23].

In this section we consider (quasi-)periodic similarity reductions (or closures) of the
chains of spectral transformations for OP. These closures lead either to OP which are
orthogonal on finite sets of points (in the case of purely periodic closure), or to the
so-called semi-classical OP on a uniform lattice which are non-trivial generalizations
of the corresponding classical OP, i.e. of the Charlier, Krawtchouk, Meixner and Hahn
polynomials.

In analogy with the analysis of the previous section, consider the action ofN DDTs
on a set of OP. We assume thatN = K + J whereK is the number of CTs andJ is the
number of GTs. Denote byu(N)n and b(N)n the recurrence coefficients obtained as a result
of this procedure (see the transformation formulae (2.8) and (2.14)). The quasi-periodic
closure condition means that [23]

u(N)n = un b(N)n = bn + α (3.1)

whereα is some constant. The condition (3.1) can be considered as a discrete version of
the quasi-periodic closure of the chain of standard Darboux transformations for the ordinary
Schr̈odinger equation which was analysed by Veselov and Shabat in [28]. Note that the
meaning of the term ‘quasi-periodic’ in our context does not coincide with that for almost
periodic functions. In the notation of equations (1.6) it is clear that we deal with functions
of two discrete variablesj andn such that the shift ofj by N does not affectujn but forces
b
j
n to acquire a homogeneous shift byα.

Consider first the purely periodic closure, i.e. the caseα = 0. Then it is clear that after
N DDTs the orthogonal polynomials return to their initial formP (N)n (x) = Pn(x), hence
F (N)(x) = F(x). Using (2.20) we get

F(x) = RKJ (x)

QKJ (x)
(3.2)

whereRKJ (x) is a polynomial appearing in (2.20) andQKJ (x) is

QKJ (x) = (x − ν1) . . . (x − νJ )− σKJ (x − µ1) . . . (x − µK). (3.3)
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It is clear from (3.3) that the degree of the polynomialQKJ (x) exceeds the degree ofRKJ (x)
by one. Hence the Stieltjes function admits an expansion in terms of simple fractions

F(x) =
L∑
k=1

Mk

x − xk (3.4)

wherexk are the roots of the polynomialQKJ (x) andL = max(K, J ). The parameters
Mk are called Christoffel numbers [3]. They play the role of discrete masses located at the
pointsxk since the corresponding weight function has the form

w(x) =
L∑
k=1

Mkδ(x − xk). (3.5)

Thus in the case of the purely periodic closure, we obtain OP which are orthogonal on the
finite set of pointsxk with the massesMk. It is clear that all finite-dimensional orthogonal
polynomials can be obtained by such a procedure.

Consider now the less trivial quasi-periodic closure, i.e. the caseα 6= 0. Without loss
of generality we can setα = 1 by appropriate rescaling of the argumentx. We then have
for the transformed OPP (N)n (x) = Pn(x − 1) and henceF (N)(x) = F(x − 1). Using (2.20)
we get the following finite-difference equation for the Stieltjes function:

F(x − 1) = σKJ (x − µ1) . . . (x − µK)F(x)+ RKJ (x)
(x − ν1) . . . (x − νJ ) . (3.6)

We will seek solutions of this equation in the form

F(x) =
∞∑
k=0

Mk

x − xk (3.7)

with some unknownxk andMk. Again, the Christoffel numbersMk play the role of the
discrete masses located at the pointsxk. However, there are now in general infinitely many
of them. Let us demand that the spectral pointsxk are bounded from below. Sinceνi
cannot coincide with anyxk this condition requiresβi = 0 (for generic values ofµi, νi).
Substituting (3.7) into (3.6), we see that under the conditionµi−µj 6= m, i 6= j , m-integer,
the xk form up toK arithmetic progressions

x
(m)
k = am + k m = 1, 2, . . . , L 6 K k = 0, 1, . . . ,∞ (3.8)

wheream are some constants. Appearance of the discrete spectrum as a superposition of up
to N arithmetic progressions is easily seen from the symmetry algebra of the taken models
[24], but one has to know a split ofN DDTs intoK CTs andJ GTs in order to determine
the possible number of equidistant series in the spectrum more precisely.

Using (3.8), we can rewrite expression (3.7) for the Stieltjes function in the form

F(x) =
∞∑
k=0

L∑
m=1

M
(m)
k

x − am − k . (3.9)

From the consistency condition of this ansatz with (3.6) we find thatam should coincide
with some ofµm, say

am = µm m = 1, 2, . . . , L. (3.10)

For the masses we obtain the equation

M
(m)

k+1

M
(m)
k

= σ−1
KJ

∏J
s=1(1+ k + µm − νs)∏K
s=1(1+ k + µm − µs)

(3.11)
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which allows us to calculate them explicitly

M
(m)
k = M(m)

0 σ−kKJ

∏J
s=1(ξms)k∏K
s=1(ηms)k

k = 1, 2, . . . ,∞ (3.12)

where ξms = 1+ µm − νs , ηms = 1+ µm − µs and (a)k = a(a + 1) . . . (a + k − 1) is
the Pochhammer symbol. The values of the ‘initial’ massesM

(m)

0 are arbitrary with the
normalization constraint

∑L
m=1

∑∞
k=0M

(m)
k = 1 as the only restriction.

For eachmth branch of the spectrum the sequenceM(m)
k is nothing else than the

generalized hypergeometric distribution. Hence, we obtain that the weight functions of
the OP obtained through quasi-periodic closure of the DDT form a set ofL generalized
hypergeometric distributions. The casesµi − µj = m, m-integer, for somei, j , are
degenerate, for example one may get a truncation of arithmetic progressions, there appear
ambiguities in the counting of spectral branches, form of the symmetry algebra, etc (see [22]
for the differential Schr̈odinger equation examples). IfK = 0 then there are no solutions
of the form (3.7).

In a similar way, one can assume that the spectral pointsxk are bounded from above.
For the existence of solutions of the form (3.7) one has to takeβi 6= 0. Then, under the
conditionsνi − νj 6= m, one findsxk as a superposition of up toJ arithmetic progressions

x
(m)
k = νm − 1− k m = 1, 2, . . . , L 6 J k = 0, 1, . . . . (3.13)

The systems of OP with spectral points bounded from above can be obtained from those
with spectral points bounded from below by the reflection transformation:Pn(x) →
(−1)nPn(−x). If one abandons semi-boundedness of the spectrum, then one obtains
formally that F(x) is composed from up toJ + K arithmetic progressions of poles.
Convergence issues are important for all these functions. The problem of classification
of admissible solutions of (3.6), in particular of those related to positive measures, lies
beyond the scope of the present work.

Consider the simplest systems arising in this approach. WhenK = 1, J = 0 (i.e. when
we have only one Christoffel transformation) formula (3.12) yields the masses

Mk = e−γ
γ k

k!
(3.14)

located at the points of the single arithmetic progression

xk = µ+ k k = 0, 1, . . . ,∞ (3.15)

with an arbitrary parameterµ. The Poisson distribution (3.14) defines the Charlier
polynomials [3]. ForK = 0, J = 1 the same Charlier polynomials arise.

For the caseK = J = 1, i.e. CT and GT with spectral parametersµ 6= ν andβ = 0,
we find the masses

Mk = M0σ
−k (1+ µ− ν)k

k!
(3.16)

located at the same points (3.15). Forσ > 0, µ > ν we get the Meixner polynomials, for
σ < 0, ν − µ = 2, 3, . . . the Krawtchouk polynomials. Already for the caseK = 2, J = 0
(or J = 2, K = 0), the corresponding polynomials are not classical since their recurrence
coefficients cannot be expressed in terms of elementary functions. There remains only
one caseJ = K = 2 for which the recurrence coefficients are elementary functions [24]
and it corresponds to the classical Hahn polynomials. Following the lines of [28] it is
natural to expect that the equations for the recurrence coefficientsun andbn associated with
higher values ofJ andK can be expressed in terms of the higher-order discrete Painlevé
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transcendents [23]. Unfortunately the full analytical theory of these functions has not yet
been developed; for some steps in this direction see, e.g., [5, 12].

What class of OP is defined by the quasi-periodic closure (3.1) of the chain of CT and
GT? In [11, 13] Magnus has considered a very general class of orthogonal polynomials,
called Laguerre–Hahn polynomials, for which the Stieltjes function satisfies by definition
the following nonlinear difference equation (generalized Riccati equation):

a(x)
F (y2)− F(y1)

y2− y1
= b(x)F (y1)F (y2)+ c(x)(F (y2)+ F(y1))+ d(x) (3.17)

wherea(x), b(x), c(x), d(x) are arbitrary polynomials inx preserving the correct asymptotic
behaviourF(x) → 1/x + O(1/x2) of the Stieltjes function atx → ∞. In general, the
corresponding OP live on non-uniform lattice defined by the functionsy1(x) andy2(x) such
that [11]: y1(x)+ y2(x) = polynomial of degree 1,y1(x)y2(x) = polynomial of the degree
62. On the left-hand side of (3.17) one finds a definition of the divided difference operator
(without the factora(x)) that possesses an important property—it maps any polynomial of
degreen onto a polynomial of degreen− 1.

In the caseb(x) = 0 the equation (3.17) becomes a linear equation which by definition
corresponds to the so-called semi-classical orthogonal polynomials (SCOP) [11, 14]. The
fact that discrete masses of general SCOP appear in correspondence with the lattices
parametrizing the polynomials’ argument was noticed in [11, 13]. The ‘classical’ OP form a
subclass of SCOP characterized by the condition that the degrees of the polynomialsa(x),
c(x) andd(x) are equal to 2, 1 and 0, respectively. Equation (3.17) has a continuous limit
leading to the differential Riccati equation; for some examples of the corresponding systems
see, for example, [2].

Let us focus on the SCOP defined on the uniform lattice with unit step, i.e. with
y1(x) = x, y2(x) = x − 1. The Stieltjes function for such polynomials obeys the equation

F(x − 1) = D(x)F (x)+ E(x) (3.18)

whereD(x) andE(x) are some rational functions in the argumentx. Now briefly consider
the case of ‘classical’ polynomials on a uniform lattice. From the above-mentioned definition
it follows that

D(x) = (x − α1)(x − α2)

(x − β1)(x − β2)
E(x) = δ

(x − β1)(x − β2)

whereα1, . . . , δ are some parameters. From (3.6) it is easy to see that this case corresponds
to a special subcase of theN = 4 quasi-periodic closure of the DDT consisting of two CTs
and two GTs. Such a closure condition characterizes the ordinary Hahn polynomials [24].

It was shown [13] that the defining property (3.17) for the Stieltjes functionF(x) is
equivalent to the existence of some difference–difference relations for the corresponding
OP. For the uniform lattice the property (3.18) is equivalent to the following.

Proposition 2. The orthogonal polynomialsPn(x) are semi-classical (on the uniform
lattice) if and only if they obey the following first-order difference–difference relations

Pn(x − 1) = Vn(x)Pn(x)+Wn(x)Pn−1(x)

Pn−1(x − 1) = Yn(x)Pn(x)+ Zn(x)Pn−1(x) (3.19)

whereVn(x), Wn(x), Yn(x), Zn(x) are some rational functions inx such that their degrees
do not depend on the numbern (i.e. all dependence onn is contained in the coefficients of
the corresponding polynomials that enter these rational functions).
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It is convenient to rewrite (3.19) in the matrix form:(
Pn(x − 1)
Pn−1(x − 1)

)
= Un(x)

(
Pn(x)

Pn−1(x)

)
(3.20)

where the matrixUn(x) is

Un(x) =
(
Vn(x) Wn(x)

Yn(x) Zn(x)

)
. (3.21)

As a simple consequence of (3.19) we see that the semi-classical polynomials obey the
second-order difference equation

Wn(x + 1)Pn(x − 1)+Wn(x)1(x + 1)Pn(x + 1)

= (Vn(x)Wn(x + 1)+Wn(x)Zn(x + 1))Pn(x) (3.22)

where1(x) = Vn(x)Zn(x)− Yn(x)Wn(x) is the determinant of the matrixUn(x). It should
be noted that for the classical orthogonal polynomials on the uniform lattice (such as
Charlier, Meixner, Krawtchouk and Hahn polynomials) the coefficients in the difference
equation (3.22) do not depend onn except for the diagonal term which contains the spectral
parameter.

From (3.18) and (3.6) we arrive at the following.

Proposition 3. Polynomials obtained by the quasi-periodic reduction of the chain of
Christoffel and Geronimus transformations belong to the class of SCOP on the uniform
lattice.

Using the explicit formulae (2.10) and (2.16) it is fairly easy to see that the class of SCOP is
invariant under the CT and GT, i.e. these transformations preserve the semi-classical nature
of polynomials.

The main statement of this section is the converse of proposition 3.

Proposition 4. All semi-classical orthogonal polynomials on the uniform lattice can be
characterized as resulting from the quasi-periodic reduction of the chain of Christoffel and
Geronimus spectral transformations.

Indeed, after a number of CTs and GTs the Stieltjes function of the corresponding OP will
be

F̃ (x) = R1(x)F (x)+ R2(x) (3.23)

whereR1(x) andR2(x) are some rational functions. From proposition 1 we know on the
one hand that the relation (3.23) implies that the corresponding OP are related to each
other through a finite number of CTs and GTs. On the other hand, since the reduction is
quasi-periodic,F̃ (x) = F(x − 1). Hence we see that the equation

F(x − 1) = R1(x)F (x)+ R2(x) (3.24)

simultaneously leads to SCOP on the uniform lattice (see (3.18)) and OP resulting from the
quasi-periodic reduction (3.1). Thus these two sets of OP coincide.

From the Maroni equivalent form of presentation of the finite chain of spectral
transformations (2.24) one can deduce another characterization of SCOP on the uniform
lattice. Namely, the orthogonal polynomialsPn(x) are SCOP on the uniform lattice if and
only if they obey the equation

B(x)Pn(x − 1) =
n+K∑
k=n−J

ξn,kPk(x) (3.25)
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where J and K are some positive integers,B(x) is some polynomial of the degreeK
and ξn,k are some constants. This statement is obtained straightforwardly by combining
proposition 4 and the property (2.24).

Let us recall that quasi-periodic reductions of the standard Darboux transformation chain
to a finite set of nonlinear differential equations has been considered in [28]. This reduction
defined Schr̈odinger operators whose formal spectra consist ofN arithmetic progressions and
whose symmetry operators are given by a finite-order differential operator. Proposition 4 can
be considered as a solution of the discrete analogue of this problem when the Schrödinger
operator is replaced by a Jacobi matrix describing a three-term recurrence relation for OP.
This means that recurrence coefficients of SCOP on the uniform lattice are exact orthogonal
polynomial analogues of the harmonic oscillator potential and of the more complicated
potentials related to some Painlevé functions and their higher-order analogues. Note that
there are more general Schrödinger operators with equidistant spectra [21, 22], whose
symmetries are generated by a differential–difference operator. Their discrete analogues
are discussed in [23] and section 5.

Returning to the OP we remark that starting from the ordinary classical polynomials on
the uniform lattice one can construct many explicit examples of semi-classical polynomials
simply by applying an arbitrary number of CTs or GTs. One of the interesting consequences
of this observation is the following. As was noted, the Uvarov transformation (i.e. the
addition of a single discrete mass to the weight function) is a combination of CTs and GTs.
Hence all polynomials whose weight function differs from the classical one by masses added
at arbitrary locations are semi-classical and hence obey a second-order difference equation.

Let us derive the second-order difference equation for the transformed polynomials
from a given initial equation. Indeed, let the initial SCOPPn(x) have recurrence functions
Vn(x), . . . , Zn(x) in the system (3.20) and let̃Pn(x) be the OP obtained fromPn(x) by a
finite number of DDTs. As was shown, thẽPn(x) are also SCOP and hence by the theorem
of Magnus they should also obey the system (3.20)(

P̃n(x − 1)
P̃n−1(x − 1)

)
= Ũn(x)

(
P̃n(x)

P̃n−1(x)

)
(3.26)

where the matrixŨn(x) contains some new rational functionsṼn(x), . . . , Z̃n(x). Now, from
(2.21) one can always write(

P̃n(x)

P̃n−1(x)

)
= Mn(x)

(
Pn(x)

Pn−1(x)

)
(3.27)

where the matrix

Mn(x) =
(
An(x) Bn(x)

Cn(x) Dn(x)

)
andAn(x), Bn(x), Cn(x), Dn(x) are some rational functions. Comparing (3.20), (3.26)
and (3.27) we easily find that the transformed OP satisfy the difference–difference relations
(3.26), where the matrix̃Un(x) is

Ũn(x) = Mn(x − 1)Un(x)M
−1
n (x). (3.28)

From (3.26) we then easily reconstruct the second-order difference equation (3.22) for the
polynomialsP̃n(x) with Vn(x), . . . , Zn(x) replaced byṼn(x), . . . , Z̃n(x).

Thus, in order to construct the difference equations for the transformed OPP̃n(x), it
is sufficient to know explicitly two matrices:Mn(x) which results from a number of CTs
and GTs andUn(x) which determines the difference–difference relation for the polynomials
Pn(x). The evaluation of both these matrices can easily be made algorithmic.
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4. Self-similar reductions and semi-classical polynomials on theq-linear lattice

In this section we briefly analyse another possible reduction of the chain of spectral
transformations—a simple version of theq-periodic closure. Such self-similar reductions
were first considered for the chain of Darboux transformations associated with the standard
Schr̈odinger equation (see [22] and references therein). For the discrete Schrödinger
equation, they were considered first in [23].

The q-periodic closure condition of the chain of DDTs is defined (instead of (3.1)) by
the conditions

u(N)n = q2un b(N)n = qbn (4.1)

whereq is some real parameter. As in the previous section we assume thatN = K + J .
It is easily seen from (4.1) that afterN DDTs the polynomialsP (N)(x) are expressed

in terms of the initial polynomials by the simple formula

P (N)n (x) = qnPn(q−1x). (4.2)

Hence the transformed Stieltjes function has the form

F (N)(z) = q−1F(q−1z). (4.3)

In place of (3.6) we thus get the following equation for the Stieltjes function:

q−1F(q−1x) = σKJ (x − µ1) . . . (x − µK)F(x)+ RKJ (x)
(x − ν1) . . . (x − νJ ) . (4.4)

Repeating the reasoning of the previous section, we see that in the ansatz (3.7) the spectral
pointsxk form now, under the conditionsβi = 0 andµi/µj 6= qm, i 6= j , for some integer
m, a set of up toK geometric progressions:

x
(m)
k = µmqk k = 0, 1, . . . , m = 1, 2, . . . , L 6 K. (4.5)

For the corresponding massesM(m)
k , we have the equations

M
(m)
k

M
(m)

k−1

= σ−1
KJ

∏J
s=1(µmq

k − νs)∏K
s=1(µmq

k − µs)
k = 1, 2, . . . (4.6)

i.e. they form generalizedq-hypergeometric distributions.
We will not consider particular examples here and discuss only the general case. Recall

that the semi-classical orthogonal polynomials on the exponential orq-linear lattice are
defined through the followingq-difference equation for their Stieltjes function [11, 13]

F(x/q) = R1(x)F (x)+ R2(x) (4.7)

whereR1,2(x) are some rational functions that guarantee thatF(x) asymptotically behaves
as 1/x + O(1/x2) for x → ∞. Arguing as in the proof of proposition 4 we arrive at the
following statement.

Proposition 5. General semi-classical orthogonal polynomials on theq-linear lattice are
obtained under theq-periodic closure condition (4.1).

Note that a slightly more general closure condition

u(N)n = q2un b(N)n = qbn + α (4.8)

whereα is some constant, can be reduced (forq 6= 1) to the simpleq-periodic one (4.1) by
a shift of the recurrence coefficientsbn→ bn + α/(1− q).
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5. General self-similar reductions and Laguerre–Hahn polynomials

In this section we consider more general self-similarity closures when the indices of
recurrence coefficients are shifted after a chain of DDTs. Such closures were considered
first for the ordinary Schr̈odinger equation [21] and in the discrete case they appeared in
[23]. We show that these generalized reductions of spectral transformations lead to a much
wider class of orthogonal polynomials known as the Laguerre–Hahn polynomials [11, 13]
on the linear andq-linear lattices.

Let us start with the uniform or linear lattice. The following closure conditions take
place:

u
(N)
n+k = un+m n = 1, 2, 3, . . .

b
(N)
n+k = bn+m + α n = 0, 1, 2, . . . (5.1)

where the integer parametersk andm are both positive (or zero). ForN = α = 0 andk 6= m
we get a periodicity condition forun, bn with n > min{k,m}. These constraints include
as special cases the forward associative transformations (k = 0), backward associative
transformations (m = 0) and transformations to the co-recursive polynomials (k = m) [3].
For k 6= 0 there is some freedom in the choice of the first coefficientsu

(N)

1 , u
(N)

2 , . . . , u
(N)
k

and b(N)0 , b
(N)

1 , . . . , b
(N)

k−1, which are thus arbitrary parameters. Note that for the discrete
Schr̈odinger equations on the full latticen ∈ Z, all these cases are equivalent.

Consider first the case whenα = 0. After N DDTs we get

P (N)n (x; k) = Pn(x;m) (5.2)

wherePn(x;m) denotes the so-calledm-associated polynomials satisfying the recurrence
relation

Pn+1(x;m)+ un+mPn−1(x;m)+ bn+m(x)Pn(x;m) = xPn(x;m) (5.3)

with the initial conditions

P0(x;m) = 1 P1(x;m) = x − bm. (5.4)

The Stieltjes function for them-associated polynomials is found to be [14, 20] (the simplest
case was discussed already in [7])

F(x;m) = A′(x)F (x)+ B ′(x)
C ′(x)F (x)+D′(x) (5.5)

where F(x) ≡ F(x; 0) and A′(x), B ′(x), C ′(x), D′(x) are polynomials satisfying the
condition thatF(x;m) ∝ 1/x for x →∞ and

A′(x)D′(x)− B ′(x)C ′(x) = constant. (5.6)

Moreover, it can be shown [20, 29] that any transformation of the Stieltjes function of the
form (5.5) with the condition (5.6) is equivalent to passing to some associated polynomials.

Since the whole spectral information is contained inF(x), we see that there is a
well defined correspondence between the spectral properties of the initial andm-associated
systems corresponding to (5.5), i.e. we have a spectral transformation in the sense given
in the introduction. The intertwining relations between the corresponding Jacobi matrices
L and L̃ are obviousDL = L̃D, Dψn = ψn+m, but these do not map OP onto OP, i.e.
a subtler analysis is thus called for. Note that currently the cases of non-integer shifts in
(5.1) are not tractable in the described way.
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From (5.1) (α = 0), the closure condition for the Stieltjes function can be written in the
form

σKJ (x − µ1) . . . (x − µK)F(x; k)+ RKJ (x)
(x − ν1) . . . (x − νJ ) = F(x;m). (5.7)

Using (5.5) one can rewrite (5.7) in the form

S(x)F 2(x)+ T (x)F (x)+ U(x) = 0 (5.8)

where S(x), T (x) and U(x) are some polynomials. This equation is known to define
the Stieltjes function for orthogonal polynomials of the ‘second-degree form’ [15]. Such
polynomials generalize Akhiezer polynomials orthogonal on several intervals; a large class
of them was characterized by Peherstorfer in [19].

Consider now the more complicated caseα 6= 0. It is convenient to normalizeα = 1,
i.e. to put

P (N)n (x; k) = Pn(x − 1;m).
It is then easy to see that we have the following condition

σKJ (x − µ1) . . . (x − µK)F(x; k)+ RKJ (x)
(x − ν1) . . . (x − νJ ) = F(x − 1;m). (5.9)

By the application of relations (5.5), equation (5.9) can be reduced to the difference Riccati
equation for the Stieltjes function

F(x − 1) = A(x)F (x)+ B(x)
C(x)F (x)+D(x) (5.10)

with some polynomial coefficientsA(x), B(x), C(x) and D(x). It turns out that
equation (5.10) coincides with the one that defines the Laguerre–Hahn polynomials on
the uniform lattice (3.17). Some properties of these polynomials were discussed in [11, 13].
Unfortunately, the analytical theory of these polynomials is in its infancy and many of their
characteristic features are not yet recognized.

One can completely analogously consider the generalizedq-periodic closure condition

u
(N)
n+k = q2un+m b

(N)
n+k = qbn+m (5.11)

yielding P (N)n (x; k) = qnPn(q−1x;m), or

σKJ (x − µ1) . . . (x − µK)F(x; k)+ RKJ (x)
(x − ν1) . . . (x − νJ ) = q−1F(q−1x;m). (5.12)

This condition leads to the Laguerre–Hahn polynomials on theq-linear lattice with the
Stieltjes function determined from the equation

F(q−1x) = A(x)F (x)+ B(x)
C(x)F (x)+D(x) (5.13)

for some polynomialA(x), B(x), C(x) andD(x).
The following statement can be considered as a fundamental contribution to the

understanding of the origin of the Laguerre–Hahn polynomials.

Proposition 6. All Laguerre–Hahn polynomials on the linear andq-linear lattices are
obtained under the generalized closure conditions (5.1) and (5.11), respectively.
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Indeed, using the results of [20, 29] one can see that for general polynomialsA(x), B(x),
C(x) andD(x) preserving leading asymptotics ofF(x) the right-hand side of (5.10) can
be represented as an iteration of a finite number of Christoffel, Geronimus and associated
polynomial transformations for the functionF(x). On the other hand, the left-hand side of
(5.10) (i.e.F(x − 1)) corresponds to the polynomialsPn(x − 1) with a shifted argument.
Hence these shifted polynomials can be obtained after a finite number of Christoffel
and Geronimus transformations followed by a finite number of associated polynomial
transformations. However, this is precisely the condition (5.1). It thus characterizes all
Laguerre–Hahn polynomials on the uniform lattice. The same arguments are valid for the
relation between theq-periodic closure (5.11) and the Laguerre–Hahn polynomials on the
exponential lattice. From (2.10) and (2.16) it follows, similar to the situation with SCOP,
that both the CT and GT preserve the nature of Laguerre–Hahn polynomials, i.e. this class
of OP is invariant under such spectral transformations.

Recurrence coefficients for the Laguerre–Hahn polynomials are determined by
some complicated nonlinear mappings representingq-analogues of the discrete Painlevé
transcendents and their higher-order generalizations. The main open problem is the
description of their analytical and asymptotic properties needed in various physical
applications. We would like to finish by remarking that the symmetry algebras formed
by the raising and lowering operators of these systems are quite simple [22, 23]. They are
determined by three generators satisfying polynomial identities, which in the particular case
N = 2 (N being theq-period of the chain) define the quantum algebraUq(sl2). It should also
be pointed out that the applications of discrete exactly solvable potentials arising from (5.11)
are not limited to the Laguerre–Hahn polynomials. The systems that go beyond them appear
as the full functional solutions of the corresponding discrete Schrödinger equation defined
for continuous values of the variablen.
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[19] Peherstorfer F 1990 On Bernstein-Szegö orthogonal polynomials on several intervalsSIAM J. Math. Anal.

21 461–82
[20] Peherstorfer F 1992 Finite perturbations of orthogonal polynomialsJ. Comput. Appl. Math.44 275–302
[21] Spiridonov V 1992 Deformation of supersymmetric and conformal quantum mechanics through affine

transformationsProc. Int. Workshop on Harmonic Oscillators (College Park, USA, March 1992) (NASA
Conf. Publ. 3197)ed D Hanet al, pp 93–108

[22] Spiridonov V 1995 Universal superpositions of coherent states and self-similar potentialsPhys. Rev.A 52
1909–35

[23] Spiridonov V, Vinet L and Zhedanov A 1993 Difference Schrödinger operators with linear and exponential
discrete spectraLett. Math. Phys.29 63–73

[24] Spiridonov V, Vinet L and Zhedanov A 1994 Periodic reductions of the factorization chain and the Hahn
polynomialsJ. Phys. A: Math. Gen.27 L669–75

[25] Spiridonov V and Zhedanov A 1995 Discrete reflectionless potentials, quantum algebras and q-orthogonal
polynomialsAnn. Phys., NY237 126–46

[26] Spiridonov V and Zhedanov A 1995 Discrete Darboux transformations, the discrete-time Toda lattice and
the Askey–Wilson polynomialsMethods Appl. Anal.2 369–98

[27] Uvarov V B 1969 The connection between systems of polynomials that are orthogonal with respect to
different distribution functionsZh. Vychisl. Matem. i Mat. Fiz.9 1253–62

[28] Veselov A and Shabat A 1993 Dressing chain and spectral theory of Schrödinger operatorFunkt. Anal. i Pril.
27 (2) 1–21

[29] Zhedanov A 1997 Rational spectral transformations and orthogonal polynomialsJ. Comput. Appl. Math.
to appear


